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Analysis of Multiple Cracks in an Infinite Functionally Graded Plate

N. I. Shbeeb, W. K. Binienda and K. L. Kreider

University of Akron

Akron, Ohio

Abstract

A general methodology was constructed to develop the fundamental solution for a

crack embedded in an infinite non-homogeneous material in which the shear modulus

varies exponentially with the y coordinate (thickness). The fundamental solution was

used to generate a solution to fully interactive multiple crack problems for stress intensity

factors and strain energy release rates. Parametric studies were conducted for two crack

configurations. The model displayed sensitivity to crack distance, relative angular

orientation, and to the coefficient of nonhomogeneity.

Introduction

One of the disadvantages of composites is the mismatch of the thermal expansion

coefficients between its constituents. This mismatch produces residual stresses, which

may initiate debonding, delamination, and micro-cracks. For example, application of

ceramics as a thermal coating for a metal substrate often produce debonding at the

interface after a small number of thermo-mechanical load cycles. In order to minimize the

mismatch between the ceramics and metal a new technology was developed. This

technology allows fully tailored processing of materials and interfacial zones with

predetermined continuously varying mechanical properties, that are known as

Functionally Graded Materials (FGM) (see Asish et. al., 1997 and Holt et. al., 1993).
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FGM could be described, as two-phase particulate composites wherein the volume

fraction of its constituents differs continuously in the thickness direction (see Niino and

Maeda, 1990; Hirano and Yamada, 1988; Hirano et. al., 1988; and Kawasaki and

Watanabe R., 1990). This implies that the composition profile could be tailored to give

the appropriate thermomechanical properties. Their physical properties can be determined

either experimentally or using higher order theory for FGMs developed by Aboudi,

Pindera and Arnold (1997).

Delale and Erdogan (1983) solved the crack problem for a nonhomogeneous plane.

The authors considered the plane elasticity problem, in which the material is isotropic,

has a constant Poisson’s ratio (ν), and the Young’s modulus (E) is of an exponential form

varying in the x-direction, namely,

xeExE β
0)( =  (1)

where β is a non-homogeneity constant and E0 the Young modulus of the homogeneous

material. They found that Poisson’s ratio did not have much effect on the resulting stress

intensity factors. And that the strain-energy release rate at the crack embedded in the

portion of the medium with higher stiffness is lower than that corresponding to the crack

tip in the less stiff side of the material. Hence, the crack will grow in the direction of the

less stiff material.

 Also, Delale and Erdogan (1988) solved the collinear crack problem for two

dissimilar homogeneous elastic half–planes bonded to a very thin nonhomogeneous layer.

The elastic properties of the interfacial material varied continuously between those of the

two semi-infinite planes. The Airy stress function was used in their formulation of the

solution in which it was assumed that it is composed of two functions, one is associated
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with an infinite plane containing the crack on the x-axis, while the second is an uncracked

strip. Their results showed that if the crack location approaches the less stiff material, the

strain energy release rate increases.

It can be noticed that multiple oriented crack problems embedded in a non-

homogeneous infinite plate have not yet been addressed. Thus the scope of this work will

deal with the general solution to a single and multiple oriented cracks embedded in a

nonhomogeneous infinite plate. It is assumed that the FGM has a constant Poisson’s ratio

and the shear modulus is of an exponential form. The solution is valid for both plane

stress and plane strain.

General Problem Formulation

The solution of the mixed boundary value problems for stress intensity factors or

strain energy release rates at a crack tip is obtained from the perturbation part of the

problem, see Figure 1.  Before any particular problem is addressed, the general strategy

of solution is discussed in this section.

Assume that there are two states of stresses, one is associated with a local coordinate

system (x1-y1) in an infinite plate, while the other is associated with boundaries of a finite

plate defined in a structural coordinate system (x-y). The crack lies on the x1-axis, which

is at an angle θ from the x-axis. In the case of infinite plate problems only the first state

of stress exists, but for the general problem the total stresses in the local coordinate

system are expressed as:
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where,
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The stress boundary conditions obtained from the perturbation problem are:
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where p1(x1) and p2(x1) are the normal and shear tractions of the inner crack surfaces.

Upon substitution of (2) into (3) the boundary conditions becomes:
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It is noticed that the principal part will be produced from the first part of (4) and (5). The

most general form of the stresses are expressed as:
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where fj are so called auxiliary functions defined as derivatives with respect to x1 of

displacement jumps along the crack. The kernels  are expressed as:
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The expressions of (2)
ij

(1)
ij X and X depend on the stress and displacement continuity

of the problem. If (l)
ijX  do not vanish as á  approaches infinity then an asymptotic

analysis is done to separate the singular part from the regular. Consequently equation (7)

can be integrated numerically.

 As á  approaches infinity equation (7) becomes:

αα

αα

θθαθθα

αα

deXtyxK

deXtyxK

tyxiyx
ijij

txiy
ijij

)sincos()cossin()2(
11

)2(

)()1(
11

)1(

1111

11

)(),,(

)(),,(

−−++−
∞

∞−

−+−
∞

∞−

∫

∫

=

=
 (8)

Substituting equation (8) into (6), the following is obtained:
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Further simplifications can be achieved by taking the limit of equation (9) so that the

first terms in equations (4) and (5) can be determined:
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Splitting equation (12) at α=0 into two parts and making the change of variable for

the part from -∞ to 0 by letting α=-β, adding and subtracting (12) from (11) and taking

the limit as y1→ 0, the following is obtained:

]
2

1
[lim))}(sin(]2)()([

))(cos(]2)()({[
2

1

)1(

0
1

)1()1()1(

1
)1()1(

0

)1(

1

SIPdxtiidXX

xtcXX

y
ijijijc

ijijcij

π
αααα

ααα
π

→

∞

+−+−

+−−+∫
 (13)

where, )(X )1( αijc is the complex conjugate of )(X )1( αij and the term denoted by SIP(1) is:
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The following integral identities can be used to evaluate equation (14) (Abramowitz

and Stegun, 1964):
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where upon taking the limit of (16) and substituting the result into (13) the following

expression is obtained:

1

)1(

1
)1()1()1(

1
)1()1(

0

)1(

1
))}(sin(]2[

))(cos(]2{[
2

1

xt

d
dxtiidXX

xtcXX

ij
ijijijc

ijijcij

−
+−+−

+−−+∫
∞

π
αα

α
π

(17)

In some problems the integrand )(X )1( αij does not converge rapidly to zero,

consequently U (where )1(X ij is close to zero) is large, thus for computational efficiency an

additional term of the asymptote is taken which is of the order (α-1), namely:
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To evaluate the last two terms of equation (19) the following identities are used

(Abramowitz and Stegun, 1964):
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where, Co is the Euler constant. The following expression replaces equation (19),
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The first part of (4) and (5) can be expressed as:
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A similar procedure is applied procedure to the second terms in equations (4) and

(5), expressed in the form shown in (10). The terms denoted by )(X )2( αij have the

following asymptotes:

−∞→−++−=
+∞→+++=

αα
αα
��

��

)2()2()2()2(

)2()2()2()2(

)(4

)(3

ijijijij

ijijijij

idcibaasy

idcibaasy
(25)



NASA/CR—1999-208676 9

Simplifications can be made with the use of the integral identities (Abramowitz and

Stegun, 1964):
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Hence, the second part of equations (4) and (5) becomes:
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It should be noted that (27) and (28) do not contain any singularity and the

asymptotic expansion is applied only for computational efficiency.
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Fundamental Solution

The formulated equations in the previous section will be used to solve the problem of

radial multiple cracks in an infinite isotropic FGM as depicted in Figure 2. Since dealing

with an infinite plate only equations (22), (23) and (24) will be used. But before doing so,

the fundamental solution of a single crack is required. Konda and Erdogan (1994) solved

the single crack problem using Navier equations. In this work the same problem will be

solved using Airy stress function and the shear modulus µ will vary exponentially with

the global y-axis.

The shear modulus is defined as follows:
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where γ, δ, and β are real constants and represent the coefficients of

nonhomogeneity.

The Airy stress function U(x1,y1) are defined as,
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The stresses and strains are related through:
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where κ is defined as,
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and the compatibility equation is defined as:
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From the compatibility equation the following fourth order governing equation for

U(x1,y1) is obtained,
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where
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Defining the Fourier transform as follows,
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1),(),( dxeyxUyV xi∫

∞
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−= αα (37)

and applying equation (37) to (35), the following characteristic equation is obtained,
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the roots of which are:
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The solution to the ODE becomes:

14131211 )()()()(),( 43211
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so that,
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Bounded form of equation (41) can be obtained upon examination of the roots of the

characteristic equations. The real part of n1 and n2 are negative while that of n3 and n4 are

positive as α approaches infinity. Hence U2 is defined for positive and negative y1 as,
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Normal and shear stresses must be continuos at y1=0. The continuity conditions can

be represented by equation (31) as:
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where, 0+ is for y1>0 and 0- is for y1<0. Using conditions (43) we can eliminate B3

and B4 :
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The remaining two unknowns can be expressed in terms of the auxiliary functions:
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The final expressions of the stresses are obtained using (31) and Hooke’s law,
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where,

.2,1j)()(

]
))()((

))((
))[3()1((

8

]
))()((

))((
))[3()1((

8

))((
8

1

))((
8

1

)(

432

4232
2

22

0
22

431

4131
2

22

0
21

4232
0

12

4131
0

11

==

−−−
−−−−+−=

−−−
−−−−+−=

−−+=

−−+=

−∫ ��dtetfF

nnn

nnnni
h

nnn

nnnni
h

nnnnh

nnnnh

ti
b

a

jj
αβα

δδδ
κδκα

µ
βα

δδδ
κδκα

µ
βα

µ
κ

µ
κ

(49)

The singular integral equations can be solved for the auxiliary functions using the

boundary conditions:
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Equation (47) and (48) are rearranged as follows,
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As α goes to infinity n1≅n2 so Xij  can  be expressed as defined in equation (9):
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the asymptotes of Xij  are found as:
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so that from (54) it is concluded that 
1
ijg and 1
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ije ,1

ijd  described earlier in equations

(12) and (18) become,
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Now substituting  (53) and (55) into (22) and (23) the final singular integral

equations are reached,
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where,
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The definitions for the stress intensity factors (SIF) and the strain energy release rate

(SERR) can be found in Konda and Erdogan (1994). Applying the Lobatto-Chebyshev

collocation integration technique, as in Binienda and Arnold (1995), to the system of

singular integral equations  (56) and (57), the normalized mode I SIF were produced and

compared to that of Konda and Erdogan (1994) as summarized in Table I.
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Multiple Crack Formulation

To formulate the multiple crack problem the total stresses of the system needs to be

determined. The cracks are located along their local xi axes, which are  related by the

following coordinate transformation:
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and the stresses are related through the Cauchy stress transformation tensor:
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The material constants are:
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The stresses for each coordinate system are expressed as:

αα

α
π

σ

α deF
hhhh

ehnehn

F
hhhh

ehnehn
yx

i

i

i

i

i

i

i

i

i

ii

ix
i

iiii

yn
ii

yn
ii

i

iiii

yn
ii

yn
ii

iixx

])(

)([
2

1
),(

)(

2)(

21

)(

12

)(

22

)(

11

)(

12

)(
2
1

)(

11

)(
2
2

)(

1)(

21

)(

12

)(

22

)(

11

)(

21

)(
2
2

)(

22

)(
2
1

)(

1

)(

2

)(

2

)(

1

−

−+

−

−= ∫
∞

∞−

+

(65)



NASA/CR—1999-208676 18

αα

αα
π

σ

α deF
hhhh

eheh

F
hhhh

eheh
yx

i

i

i

i

i

i

i

i

i

ii

ix
i

iiii

yn
i

yn
i

i

iiii

yn
i

yn
i

iiyy

])(

)([
2

1
),(

)(

2)(

21

)(

12

)(

22

)(

11

)(

12

)(

11

)(

1)(

21

)(

12

)(

22

)(

11

)(

21

)(

222

)(

1

)(

2

)(

2

)(

1

−

−+

−

−−= ∫
∞

∞−

+

(66)

αα

αα
π

τ

α deF
hhhh

ehnehn

F
hhhh

ehnehni
yx

i

i

i

i

i

i

i

i

i

ii

ix
i

iiii

yn
ii

yn
ii

i

iiii

yn
ii

yn
ii

iiyx

])(

)([
2

),(

)(

2)(

21

)(

12

)(

22

)(

11

)(

12

)(

1

)(

11

)(

2

)(

1)(

21

)(

12

)(

22

)(

11

)(

21

)(

2

)(

22

)(

1

)(

1

)(

2

)(

2

)(

1

−

−+

−

−−= ∫
∞

∞−

+

(67)

αα

α
π

σ

α deF
NNNN

eNneNn

F
NNNN

eNneNn
yx

i

i

i

i

i

i

i

i

i

ii

ix
i

iiii

yn
ii

yn
ii

i

iiii

yn
ii

yn
ii

iixx

])(

)([
2

1
),(

)(

2)(

21

)(

12

)(

22

)(

11

)(

12

)(
2
3

)(

11

)(
2
4

)(

1)(

21

)(

12

)(

22

)(

11

)(

21

)(
2
4

)(

22

)(
2
3

)(

3

)(

4

)(

4

)(

3

−

−+

−

−= ∫
∞

∞−

−

(68)

αα

αα
π

σ

α deF
NNNN

eNeN

F
NNNN

eNeN
yx

i

i

i

i

i

i

i

i

i

ii

ix
i

iiii

yn
i

yn
i

i

iiii

yn
i

yn
i

iiyy

])(

)([
2

1
),(

)(

2)(

21

)(

12

)(

22

)(

11

)(

12

)(

11

)(

1)(

21

)(

12

)(

22

)(

11

)(

21

)(

222

)(

3

)(

4

)(

4

)(

3

−

−+

−

−−= ∫
∞

∞−

−

(69)

αα

αα
π

τ

α deF
NNNN

eNneNn

F
NNNN

eNneNni
yx

i

i

i

i

i

i

i

i

i

ii

ix
i

iiii

yn
ii

yn
ii

i

iiii

yn
ii

yn
ii

iiyx

])(

)([
2

),(

)(

2)(

21

)(

12

)(

22

)(

11

)(

12

)(

3

)(

11

)(

4

)(

1)(

21

)(

12

)(

22

)(

11

)(

21

)(

4

)(

22

)(

3

)(

3

)(

4

)(

4

)(

3

−

−+

−

−−= ∫
∞

∞−

−

(70)



NASA/CR—1999-208676 19

where,
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and hij  are as defined in (49) for the ith crack. Assume that there are n cracks present, then

the stresses for the ith crack could be expressed as:
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where 
)()(

,
j

yx

j

yy iiii
τσ are found using (63) and they are evaluated as in (9) and (10)

respectively. One must be carefull when chossing the stress components for the positive

yi  (yi
+) and for the negative yi (yi

-). Thus the final singular integral equation could be

expressesd for the ith crack as:
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where the constants 
)()( j

mn

j

mn da � and 
)( j

mnk are defined in the Appendix, the kernels 
)(i

mnk

are defined as in (58) through (64) and θ=θj-θi.
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 The above solution is reduced to the case of two collinear cracks embedded in the

isotropic plate to demonstrate high accuracy of the results as shown in Table II.

Parametric Studies

In the following parametric studies the length of all cracks is chosen to be 2c = 2.

The infinite plate is subjected to normal stress along y global direction, σyy=1 psi. Cracks

are located along their local xi axes, which can be inclined with respect to the global x

axis. All the geometrical dimensions are normalized with respect to c. The parametric

studies are presented for the normalized mode-I and mode-II SIF, i.e., k1/k0 and k2/k0, and

normalized SERR, i.e., G1/G0 and G2/G0, where ck yy0 σ=  and 
)1(

k8
G

2
00

0 +κπ
µ

= .

First study takes into consideration the problem of two collinear horizontal cracks.

The same crack configuration was used to produce the results in Table II for

homogeneous materials, see insert in Figure 3 or 4. Here we extended the material

properties to the show transition from homogeneous material to FGM. The distance

between the inner tips is denoted by r. Figures 3 and 4 show mode I normalized SIF and

mode-I normalized SERR versus a normalized crack tip distance r/c.  The curves are

shown using the logarithmic scale for the crack distance variable.

It can be noticed that as the distance between the cracks becomes smaller the SIF

and SERR become larger for every power of the exponential variation coefficient  γ.

Note, that the homogeneous case is represented by making the coefficient γ = 0.  Both

driving forces increase as γ increases for materials becoming more nonhomogeneous. The

increase is especially significant for the crack tip distance less than 0.01.
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The case of collinear inclined cracks at 30 degrees from the horizontal axis is

shown in Figures 5 to 8.  Mode-I SIF shown in Figure 5 has larger magnitudes for both

the homogeneous and FGM materials than the corresponding Mode-II SIF shown in

Figure 6. Both modes show increase of SIF for decreasing of the crack tip distance and

for increasing of the coefficient γ. Figures 7 and 8 display mode-I and II SERR.

Magnitudes of Mode-I SERR are almost three times larger than the corresponding mode-

II SERR. Both SERR modes increase for decreasing of the crack tip distance r (same as

SIF) and for decreasing of γ (opposite to SIF). It should be pointed out that the material

stiffness at each crack tip dominates the results for SERR to the point of reversing the

trend in comparison with SIF with respect to γ.

The cases when two cracks are located along two different local radial axes

distance d = 1 from the origin is shown in the remaining figures. The location of the first

crack is kept constant at 30 degrees while orientation of the second crack is changed from

45 to 90 degrees. Both SIF and SERR are shown for each crack tip versus the orientation

angle of the second crack.

Figures 9 and 10 display mode-I and II SIF while Figures 11 and 12 represent

both modes of SERR at the left crack tip of the stationary crack 1.  It can be noticed that

when crack 2 comes closer to crack 1, the tip a1 is shielded and all driving force

components are significantly reduced. Mode-II SIF has its maximum for the orientation

angle of the second crack close to 70 degrees.  By increasing γ higher magnitudes for

mode-I SIF and lower magnitudes for mode-II SIF are produced.

Both modes of the SERR depend not only on square of the SIF but also on the

material stiffness at the crack tip. This influence is especially shown in Figure 11 where
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the homogeneous case produces the smallest SERR for angle 45 degrees similar to the

corresponding SIF. However, homogeneous SERR curve becomes largest for higher

angles, which is opposite to the corresponding SIF.

The opposite character of SIF and SERR is even better shown in Figures 13 to 16.

Here the shielding effect does not exhibit itself.  Both modes of SIF for the homogeneous

material are smallest (see Figures 13 and 14 for mode-I and II SIF), while both

components of SERR are largest (see Figures 15 and 16 for mode-I and II SERR),

because of the crack tip material stiffness influence.

The results for the left crack tip of the second crack are shown in Figures 17 to 20.

Mode-I SIF depends on the crack orientation and for homogeneous case is smallest.  The

negative values of the mode-I SIF should be interpreted as the crack closure and SERR

for such case is zero.

Mode-II SIF at the tip of the second crack versus its orientation is shown in

Figure 18.  For the homogeneous case the maximum k2 is at 45 degrees. In the cases of

higher coefficient γ the maximum k2 is shifted towards 60 degrees crack orientation. The

magnitudes of SIF are larger for nonhomogeneous cases than for the homogeneous case

when the orientation angles of the second crack are higher than 60 degree.

Mode-I of SERR  monotonically decreases to almost zero at 75 degrees and at

about 50 degrees does not depend on  γ, see Figure 19. For 45-50 degrees the

homogeneous case is the highest and for 50-90 is the smallest. Mode-II SERR is the

highest for 45-90 degrees angle orientation and has its maximum at 45 degrees, see

Figure 20. The shift of the maximum to 55 degrees can only be observed for γ =1.0.
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Mode-I SIF for the right crack tip b2 is very small for all the angles examined or it

is negative (crack  closure) for the angle more than 65 degrees for the homogeneous case

and down to 50 degrees for FGM with  γ=1. Mode-II  SIF is shown in Figure 22. The

maximum is moved to 60 degrees because of the influence of the crack below. The

homogeneous material case is the smallest for all the angles of the crack orientation.

Mode-I SERR at the same crack tip is shown in Figure 23. Homogeneous case

starts to be the highest at the orientation of 45 degrees and quickly goes to zero at 62

degrees. The FGM with the highest  γ also goes to zero but at the smaller angle because

the crack tip remains closed.  Mode-II SERR is shown in Figure 24. All the curves have

their maximum at 55 degrees. The highest SERR is for  γ = 1.0 and the smallest for  γ =

0.25 at the angle of 45 degrees. The homogeneous material produces the smallest SERR

for the orientation close to 75 degrees.

All of the above parametric studies demonstrate that the effect of the material

properties, crack orientation, location of the additional crack are interdependent and

consequently produce behavior different than isotropic homogeneous materials. The

model developed in this work can be used to study fracture problems in FGM and can be

used to tailor the properties in order to reduce driving force components and effectively

increase live of these materials.

Conclusions

Application of the general solution to the mixed boundary value problem was

demonstrated to provide an elegant way of obtaining the fundamental solution for a crack

embedded in an infinite nonhomogeneous plate. The fundamental solution was used to
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address multiple crack problem. Parametric studies for the multiple cracks revealed, that

both SIF and SERR highly depend on the crack geometrical parameters such as crack

orientation, location, relative distance, etc., but they also depend on the power of the

exponent describing the rate of change of the material elastic parameters, γ, and local

stiffness of the material at each crack tip. 

The results demonstrated that the driving forces can be amplified by the collinear

crack orientation or they can be reduced by the shielding effect between cracks above or

below.  The character of the amplification or shielding remains similar for

nonhomogeneous materials but in most cases higher than zero coefficient γ increases SIF

and reduces SERR.

The well known one-to-one relation between SIF and SERR curves is not always

valid for FGM, because SERR also depends on the material elastic constants. Hence, the

SIF curves may have different character than SERR curves. The application of the

driving forces to crack propagation criterion need to be further studied to determine

which driving force (SIF or SERR) best correlates with appropriate experimental results.

However, since SERR includes the influence of SIF and material stiffness at the tip it is

recommended that total SERR is used for the driving force parameter for FGM.
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Table I Verification of the Solution.

cγ Konda and

Erdogan  (1994)

k1(a)/√c

Present Study

k1(a)/ √c

Konda  and

Erdogan (1994)

k2(a)/ √c

Present Study

k2(a)/ √c

0.25 1.036 1.036 0.065 0.062

0.50 1.101 1.101 0.129 0.122

1.0 1.258 1.260 0.263 0.243

c=(b-a)/2

Table II Two Collinear Cracks In Isotropic Plate

From literature

Horri and Nemat-Nasser

(1985)

Erdogan

(1962)

Present Method

c

rd

Inner Outer Inner Outer Inner Outer

0.22 --- --- 1.45387 1.11741 1.45736 1.11786

0.50 1.2289 1.0811 1.22894 1.08107 1.22894 1.08107

0.857 1.1333 1.0579 1.13326 1.05786 1.13329 1.05787
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Figure 1. Methodology of Solution for the Fundamental Problem.

(a) Mixed Boundary Value Problem for the FGM.

(b) Infinite FGM Plate without Crack.

(c) Perturbation Problem of a Crack loaded by Surface Tractions.
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for two collinear horizontal cracks. (σyy = 1.0, σxx = σxy =0.0).
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Figure 4. Mode I normalized SERR versus normalized inner crack tips distance

for two collinear horizontal cracks. (σyy = 1.0, σxx = σxy =0.0).
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for two collinear cracks along the θ=30 deg. (σyy = 1.0, σxx = σxy =0.0).
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for two collinear cracks along the θ=30 deg. (σyy = 1.0, σxx = σxy =0.0).
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for two collinear cracks along the θ=30 deg. (σyy = 1.0, σxx = σxy =0.0).
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Figure 8. Mode II normalized SERR versus normalized inner crack tips distance for two

collinear cracks along the θ=30 deg. (σyy = 1.0, σxx = σxy =0.0).
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Figure 10. Mode II normalized SIF at the tip a1 versus crack (2) orientation angle θ2 for

two inclined cracks. (σyy = 1.0, σxx = σxy =0.0, d=1.0, θ1=30 deg.).
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Figure 11. Mode I normalized SERR at the tip a1 versus crack (2) orientation angle θ2

for two inclined cracks. (σyy = 1.0, σxx = σxy =0.0, d=1.0, θ1=30 deg.).
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Figure 12. Mode II normalized SERR at the tip a1 versus crack (2) orientation angle θ2

for two inclined cracks. (σyy = 1.0, σxx = σxy =0.0, d=1.0, θ1=30 deg.).
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Figure 13. Mode I normalized SIF at the tip b1 versus crack (2) orientation angle θ2 for

two inclined cracks. (σyy = 1.0, σxx = σxy =0.0, d=1.0, θ1=30 deg.).
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Figure 14. Mode II normalized SIF at the tip b1 versus crack (2) orientation angle θ2

for two inclined cracks. (σyy = 1.0, σxx = σxy =0.0, d=1.0, θ1=30 deg.).
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Figure 15. Mode I normalized SERR at the tip b1 versus crack (2) orientation angle θ2

for two inclined cracks. (σyy = 1.0, σxx = σxy =0.0, d=1.0, θ1=30 deg.).
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Figure 16. Mode II normalized SERR at the tip b1 versus crack (2) orientation angle θ2

for two inclined cracks. (σyy = 1.0, σxx = σxy =0.0, d=1.0, θ1=30 deg.).
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Figure 17. Mode I normalized SIF at the tip a2 versus crack (2) orientation angle θ2

for two inclined cracks. (σyy = 1.0, σxx = σxy =0.0, d=1.0, θ1=30 deg.).
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Figure 18. Mode II normalized SIF at the tip a2 versus crack (2) orientation angle θ2

for two inclined cracks. (σyy = 1.0, σxx = σxy =0.0, d=1.0, θ1=30 deg.).
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Figure 19. Mode I normalized SERR at the tip a2 versus crack (2) orientation angle θ2 for

two inclined cracks. (σyy = 1.0, σxx = σxy =0.0, d=1.0, θ1=30 deg.).
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Figure 20. Mode II normalized SERR at the tip a2 versus crack (2) orientation angle θ2

for two inclined cracks. (σyy = 1.0, σxx = σxy =0.0, d=1.0, θ1=30 deg.).

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

45 60 75 90

γc=0.0001

γc=0.25

γc=0.50

γc=0.75

γc=1.0

k 1(b
2)/

k 0

y

2c

2c

a1

b1
a2

b2
Crack2

Crack1

x

θ1

θ2

d

θ2

Figure 21. Mode I normalized SIF at the tip b2 versus crack (2) orientation angle θ2

for two inclined cracks. (σyy = 1.0, σxx = σxy =0.0, d=1.0, θ1=30 deg.).
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Figure 22. Mode II normalized SIF at the tip b2 versus crack (2) orientation angle θ2

for two inclined cracks. (σyy = 1.0, σxx = σxy =0.0, d=1.0, θ1=30 deg.).
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Figure 23. Mode I normalized SERR at the tip b2 versus crack (2) orientation angle θ2

for two inclined cracks. (σyy = 1.0, σxx = σxy =0.0, d=1.0, θ1=30 deg.).
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Figure 24. Mode II normalized SERR at the tip b2 versus crack (2) orientation angle θ2

for two inclined cracks. (σyy = 1.0, σxx = σxy =0.0, d=1.0, θ1=30 deg.).
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